<img alt="" src="https://secure.leadforensics.com/99712.png" style="display:none;">

Gear Mechanisms

Learn More Below

What Are Gears

Gears are mechanisms that mesh together via teeth and are used to transmit rotary motion from one shaft to another. Gears are defined by two important items: radius and number of teeth. They are typically mounted, or connected to other parts, via a shaft or base.

Radius: The gear radius is defined differently depending on the particular section of the gear being discussed. The two most relevant measurements, however, are the root radius and the addendum radius. The root radius is the distance from the center of the gear to the base of the teeth while the addendum radius (also called the "pitch" radius) is the distance from the center of the gear to the outside of the teeth.

Teeth: The teeth are the portion of the gear that makes contact with another gear. In order for two gears to mesh together the pitch must be the same for all mating pairs. The pitch of a gear is the distance between equivalent points of adjacent teeth. When the teeth of gears mesh properly they prevent slipping and can exhibit efficiencies of up to 98%.

Contact Us

How Do Gears Work

Gears can serve as an efficient means to reverse the direction of motion, change rotational speed, or to change which axis the rotary motion is occurring on. The sizes of the gears usually depend on the desired gear ratio and the shaft upon which the gears will be mated.

Any two gears that come into contact with one another will naturally produce an equal and opposite force in the other gear. For example, as the smaller gear pictured below moves clockwise, the larger gear will naturally move counter-clockwise. Any shaft attached to the respective gear will rotate in the direction of the gear it is attached to.

Rotational speed is adjusted through the use of a "gear ratio." The gear ratio is the ratio of the radius of the drive or "input" gear (the one that is powering the interaction between the two gears) to the radius of the "output" gear. It can also commonly defined as the number of teeth on the input gear to the number of teeth on the output gear. The larger the gear ratio the more the output rotation will slow. The smaller the gear ratio the more the output rotation's angular velocity will increase. Gear ratios farther from "1" means that the disparity between the gear sizes will be greater. Read more on gear ratios below.

When discussing a pair of gears, the smaller gear is considered the pinion while the larger is considered the "gear." When two or more gears are linked together it is considered a gear train. The gear being turned by the motor is referred to as the “driver” gear while the last gear, often the output gear, in the system is referred to as the “driven” gear. Any additional gears in the drive train are “idler” gears.

Perhaps the most common gear for changing rotational axis is the bevel gear (seen below). The bevel gear is commonly used in vehicle differentials to rotate the motion provided by the engine 90 degrees in order to drive the wheels along their proper axis.

Types Of Gears


Spur Gear

Spur Gear The most common type of gear is a spur gear. Spur gears have teeth that protrude outward from the perimeter of the gear. They are mounted on parallel axes and can be used to create a wide range of gear ratios. One drawback of this mechanism is that the collisions between each tooth cause a potentially objectionable noise since the entirety of each tooth meshes at once.


Helical Gears

Helical Gears: In an effort to reduce the noise from spur gears, helical gears can be utilized. The teeth of helical gears are cut at an angle to the face of the gear so that the tooth engagement begins at one end and gradually transfers to the rest of the tooth as the gear rotates. This design leads to noise reduction and an overall smoother system. The helical pattern of the gears creates a thrust load as the gear teeth come into contact with each other at an angle that is not perpendicular to the shaft axis. Bearings are often incorporated into mechanisms with helical gears in order to support that thrust load.


Bevel Gears

Bevel Gears: Bevel gears can be used in mechanisms to change the axis of rotation. Although they can be designed to work at other angles, they are most often used to change the axis of rotation by 90 degrees. Similar to spur gears, bevel gears may also feature straight or helical teeth. Additionally, hypoid bevel gears can be used when the input and output shafts’ axes do not intersect.


Worm Gears

Worm Gears: In mechanisms where large gear reductions are needed, worm gears can be used to achieve gear ratios of greater than 300:1 if necessary. Worm gears also possess a natural locking feature in that the worm can easily turn the gear, but the gear cannot turn the worm due to the shallow angle of the worm causing high friction between the gears. These mechanisms also change the axis of rotation by 90 degrees, but in a different manner than bevel gears. Unlike other gears where the teeth are cut parallel, worm gear teeth are cut almost perpendicular to the shaft’s axis of rotation while mating with a more traditional gear profile.


Rack & Pinion Gears

Rack & Pinion Gears: Rack and pinion gears are used to convert rotation into linear motion. The circular gear, or pinion, meshes with the rack and the rotation of the pinion causes the rack to translate. The steering mechanism in automobiles utilizes a rack and pinion system. As the pinion rotates, it forces the rack to move linearly. Since the length of the rack is not infinite, these mechanisms are not used in applications that have continuous rotation.


Planetary Gears

Planetary Gears: Planetary gear sets may be the most interesting mechanism in the gear world. These mechanisms have three main components: the sun gear, the planet gears and carrier, and the ring gear. Each of these components can serve as the input, output, or can be held stationary. The functional designation of each component determines the gear ratio of the entire system. A set of bands or clutches is often used in order to lock different parts of the device. The direction of rotation can even be reversed by having the sun gear as the input, the ring gear as the output, and the planet gears stationary. Additionally, locking any two components of the mechanisms will lock the whole system into a 1:1 gear ratio. This one set of gears can produce several gear ratios and the most common application for this mechanism is in the transmission of automatic cars.